Extensions of Symmetric Integration Formulas*

By A. H. Stroud

1. Introduction. Assume we are given an integration formula for the m-dimensional cube C_{m} of the form

$$
\begin{equation*}
\int_{-1}^{1} \cdots \int_{-1}^{1} f\left(x_{1}, \cdots, x_{m}\right) d x_{1} \cdots d x_{m} \simeq \sum_{j=1}^{N} A_{j} f\left(\nu_{j 1}, \cdots, \nu_{j m}\right) \tag{1}
\end{equation*}
$$

which is exact for all polynomials of degree $\leqq d$; this is equivalent to assuming (1) is exact for all monomials

$$
\begin{gathered}
x_{1}{ }^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{m}{ }^{\alpha_{m}}, \quad \alpha_{1}, \cdots, \alpha_{m} \text { nonnegative integers }, \\
0 \leqq \alpha_{1}+\alpha_{2}+\cdots+\alpha_{m} \leqq d .
\end{gathered}
$$

We say that such a formula (1) has degree d.
We say that formula (1) is symmetric if the right side of (1) is not changed under any of the m ! permutations of the variables $x_{1}, x_{2}, \cdots, x_{m}$. In other words (1) is symmetric provided that if the formula contains the point

$$
\left(\nu_{j 1}, \nu_{j 2}, \cdots, \nu_{j m}\right) \quad \text { coeff. } A_{j}
$$

then the formula also contains the point

$$
\left(\nu_{j p_{1}}, \nu_{j p_{2}}, \cdots, \nu_{j p_{m}}\right) \quad \text { coeff. } A_{j}
$$

where $\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ is any permutation of $(1,2, \cdots, m)$.
In this article we show how a symmetric formula (1) of degree $d \leqq 2 m+1$ for C_{m} can be used to construct a symmetric formula of the same degree for C_{n}, $n>m$.

Following Hammer and Stroud [2] we say that formula (1) is fully-symmetric if the right side of (1) is not changed under any of the $2^{m}(m!)$ linear transformations of C_{m} onto itself. Lyness [3] has given a method by which a fully-symmetric formula of degree $d \leqq 2 m+1$ can be used to construct a fully-symmetric formula of degree d for $C_{n}, n>m$. Lyness defines a formula for C_{n} constructed by this method as an extension of the formula for C_{m}. The result of this article is a variation of the result of Lyness.

In what follows we use the notation

$$
I_{C_{m}}\left(x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \cdots x_{m}{ }^{\alpha_{m}}\right) \equiv \int_{-1}^{1} \cdots \int_{-1}^{1} x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \cdots x_{m}{ }^{\alpha_{m}} d x_{1} \cdots d x_{m}
$$

and $V_{m} \equiv I_{C_{m}}(1)=2^{m}$. We note for future reference that if

$$
I_{C_{m}}\left(x_{1}{ }_{1}^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \cdots x_{m}{ }^{\alpha_{m}}\right)=c_{\alpha_{1} \cdots \alpha_{m}} V_{m}
$$

then

[^0]$$
I_{C_{n}}\left(x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \cdots x_{m}{ }^{\alpha_{m}}\right)=c_{\alpha_{1} \cdots \alpha_{m}} V_{n} .
$$
2. The Method of Extension. We assume formula (1) is symmetric and we write the points and coefficients in this formula as follows:

$m_{i}=m_{i 1}+\cdots+m_{i k}, 0 \leqq m_{i} \leqq m, 1 \leqq m_{i 1} \leqq m, \cdots, 1 \leqq m_{i k} \leqq m, \mu_{i r} \neq \mu_{i s}$ $r \neq s, i=1,2, \cdots, M$.

Here $\left(\nu_{i 1}, \cdots, \nu_{i m}\right)_{S}$ denotes the set of points consisting of the point ($\nu_{i 1}, \cdots, \nu_{i m}$) and all points obtained by permuting the coordinates $\nu_{i 1}, \cdots, \nu_{i m}$ in all possible ways. A_{i} is the coefficient of each point in the set of points (2).

We define the extension of formula (2) to be the formula for C_{n} consisting of the following:

$$
\begin{equation*}
(\underbrace{\mu_{i 1}, \cdots, \mu_{i 1}}_{j_{i 1} \text { times }}, \cdots, \quad \underbrace{\mu_{i k}, \cdots, \mu_{i k}}_{j_{i k} \text { times }}, \quad \underbrace{0, \cdots, 0}_{n-j_{i} \text { times }})_{S} \quad B_{i, j_{i 1}, \cdots, j_{i k}}, \tag{3}
\end{equation*}
$$

for all possible choices of $j_{i 1}, \cdots, j_{i k}$ which satisfy $0 \leqq j_{i 1} \leqq m_{i 1}, \cdots, 0 \leqq j_{i k} \leqq m_{i k}$ and for all $i, i=1,2, \cdots, M$. The coefficient of the points (3) is

$$
\begin{equation*}
B_{i, j_{i 1}, \cdots, j_{i k}}=\frac{(-1)^{m_{i-j}} Z\left(n, m, m_{i}, j_{i}\right)}{\left(m_{i 1}-j_{i 1}\right)!\cdots\left(m_{i k}-j_{i k}\right)!} a_{i} V_{n} \tag{4}
\end{equation*}
$$

where $Z\left(n, m, m_{i}, j_{i}\right)=\left(n-m+m_{i}-j_{i}-1\right)!/(n-m-1)!$.
We now state:
Theorem 1. If formula (2) for C_{m} has degree d, where $d \leqq 2 m+1$, then the points (3) with coefficients (4) are a formula of degree d for $C_{n}, n>m$.

We do not know how to prove this theorem for all m but we believe it to be true. We have verified it for $m \leqq 5$; we will show how it can be verified for $m=4$.

To start let us assume that the points (2) have the special form

$$
\begin{equation*}
\left(\mu_{i 1}, \mu_{i 1}, \mu_{i 2}, \mu_{i 2}\right)_{S} \quad A_{i}=a_{i} V_{4} \tag{5}
\end{equation*}
$$

for all $i=1,2, \cdots, M$. The points (3) and coefficients (4) will then be

$$
(6)
$$

$$
\begin{aligned}
& \left(\mu_{i 1}, \mu_{i 1}, \mu_{i 2}, \mu_{i 2}, 0, \cdots, 0\right)_{S} \quad B_{i, 2,2}=a_{i} V_{n}, \\
& \left.\begin{array}{lll}
\left(\mu_{i 1}, \mu_{i 1}, \mu_{i 2},\right. & 0,0, \cdots, 0)_{S} & B_{i, 2,1} \\
\left(\mu_{i 1}, \mu_{i 2}, \mu_{i 2},\right. & 0,0, \cdots, 0)_{S} & B_{i, 1,2}
\end{array}\right\}=-(n-4) a_{i} V_{n}, \\
& \left.\begin{array}{llll}
\left(\mu_{i 1}, \mu_{i 1},\right. & 0, & 0,0, \cdots, 0)_{S} & B_{i, 2,0} \\
\left(\mu_{i 2}, \mu_{i 2},\right. & 0, & 0, & 0, \cdots, 0)_{S}
\end{array} B_{i, 0,2}\right\}=\frac{(n-3)(n-4)}{2} a_{i} V_{n}, \\
& \left.\begin{array}{llll}
\left(\mu_{i 1}, \mu_{i 2},\right. & 0, & 0,0, \cdots, 0)_{S} & B_{i, 1,1}=(n-3)(n-4) a_{i} V_{n}, \\
\left(\mu_{i 1},\right. & 0, & 0, & 0,0, \cdots, 0)_{S} \\
\left(\mu_{i 2},\right. & 0, & 0, & 0, \\
0, \cdots, 0)_{S} & B_{i, 0,1}
\end{array}\right\}=\frac{-(n-2)(n-3)(n-4)}{2} a_{i} V_{n}, \\
& (0 \quad 0,0,0,0, \cdots, 0) \quad B_{i, 0,0}=\frac{(n-1)(n-2)(n-3)(n-4)}{4} a_{i} V_{n} \text {, } \\
& i=1,2, \cdots, M .
\end{aligned}
$$

Here $B_{i, 0,0}$ is only part of the coefficient of the point $(0,0, \cdots, 0)$ in the extended formula; this coefficient is $\sum_{i=1}^{M} B_{i, 0,0}$.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be fixed, but arbitrary, positive integers which satisfy

$$
\begin{aligned}
& 0<\alpha_{1} \leqq d, \\
& 0<\alpha_{1}+\alpha_{2} \leqq d, \\
& 0<\alpha_{1}+\alpha_{2}+\alpha_{3} \leqq d, \\
& 0<\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} \leqq d,
\end{aligned}
$$

where $d \leqq 9$. We show that formula (6) is exact for each of the five monomials

$$
\begin{equation*}
x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha} 2 x_{3}{ }^{\alpha_{3}} x_{4}{ }^{\alpha}, \quad x_{1}{ }^{\alpha 1} x_{2}{ }^{\alpha_{2}} x_{3}{ }^{\alpha_{3}}, \quad x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}}, \quad x_{1}{ }^{\alpha_{1}}, \quad 1 . \tag{7}
\end{equation*}
$$

Consider, for example, the monomial $x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}}$. The assumption that (5) is a formula of degree $d, d \leqq 9$, implies that

$$
V_{m} \sum_{i=1}^{M} a_{i}\left[\mu_{21}^{\alpha_{1}} \mu_{i 1}^{\alpha_{2}}+2 \mu_{i 1}^{\alpha_{1}} \mu_{i 2}^{\alpha_{2}}+2 \mu_{i 1}^{\alpha_{2}} \mu_{22}^{\alpha_{1}}+\mu_{i 2}^{\alpha_{1}} \mu_{i 2}^{\alpha_{2}}\right]=I_{C_{m}}\left(x_{1}{ }^{\alpha_{1}} x_{2}^{\alpha_{2}}\right) .
$$

Using formula (6) to approximate $I_{C_{n}}\left(x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha}\right)$ we can verify that we obtain

$$
V_{n} \sum_{i=1}^{M} a_{i}\left[\mu_{11}^{\alpha_{1}} \mu_{i 1}^{\alpha_{2}}+2 \mu_{i 1}^{\alpha_{1}} \mu_{i 2}^{\alpha_{2}}+2 \mu_{i 1}^{\alpha_{2}} \mu_{i 2}^{\alpha_{1}}+\mu_{i 2}^{\alpha_{1}} \mu_{i 2}^{\alpha_{2}}\right] .
$$

By the remark made at the end of Section 1 this shows that formula (6) is exact for $x_{1}{ }^{\alpha} x_{2}{ }^{\alpha_{2}}$. In a similar way we can verify that (6) is exact for all the monomials (7). By symmetry it follows that (6) is also exact for all monomials

$$
x_{p_{1}}^{\alpha_{1}} x_{p_{2}}^{\alpha_{2}} x_{p_{3}}^{\alpha_{3}} x_{p_{4}}^{\alpha_{4}}, \quad x_{p_{1}}^{\alpha_{1}} x_{p_{2}}^{\alpha_{2}} x_{p_{3}}^{\alpha_{3}}, \quad x_{p_{1}}^{\alpha_{1}} x_{p_{2}}^{\alpha_{2}}, \quad x_{p_{1}}^{\alpha_{2}}
$$

where $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is any permutation of $(1,2,3,4)$.
To complete the proof that (6) has degree d there only remains to show that (6) is exact for all monomials of the form
(8) $x_{p_{1}}^{\alpha_{1}} x_{p_{2}}^{\alpha_{2}} \cdots x_{p_{s}}^{\alpha_{s}}, \quad 4<s \leqq n, \alpha_{i}>0, i=1, \cdots, s, 0<\alpha_{1}+\cdots+\alpha_{s} \leqq 9$.

We note that in each monomial (8) the α_{i} cannot all satisfy $\alpha_{i} \geqq 2, i=1, \cdots, s$. Therefore, for at least one i we must have $\alpha_{i}=1$. This means that

$$
I_{C_{n}}\left(x_{p_{1}}^{\alpha_{1}} x_{p_{2}}^{\alpha_{2}} \cdots x_{p_{s}}^{\alpha_{s}}\right)=0 .
$$

But formula (6) also gives zero for the integral of (8) because each point of (6) has at most four nonzero coordinates.

In a similar way we can verify that if a formula (2) for C_{4} consists of any collection of points and has degree $d \leqq 9$ then the extended formula (3) also has degree d.
3. An Example. Albrecht and Collatz [1] have given the following 5th-degree 7-point formula for C_{2} :

$$
\begin{aligned}
&(0,0) \quad 2 V_{2} / 7 \\
&(r, r) \quad 25 V_{2} / 168, \\
&(-r,-r) \quad 25 V_{2} / 168, \\
&(s,-t)_{S} \quad 5 V_{2} / 48, \\
&(-s, t)_{S} \quad 5 V_{2} / 48, \\
& r^{2}=7 / 15, \quad s^{2}=\left(7+(24)^{1 / 2}\right) / 15, \quad t^{2}=\left(7-(24)^{1 / 2}\right) / 15 .
\end{aligned}
$$

The extension of this formula gives the following 5 th-degree formula for C_{n} which uses $3 n^{2}+3 n+1$ points:

$$
\begin{array}{ll}
\pm(r, r, 0, \cdots, 0)_{S} & 25 V_{n} / 168, \\
\pm(r, 0,0, \cdots, 0)_{S} & -25(n-2) V_{n} / 168 \\
\pm(s,-t, 0, \cdots, 0)_{S} & 5 V_{n} / 48, \\
\pm(s, 0,0, \cdots, 0)_{S} & -5(n-2) V_{n} / 48 \\
\pm(t, 0,0, \cdots, 0)_{S} & -5(n-2) V_{n} / 48, \\
\quad(0,0,0, \cdots, 0) & \left(5 n^{2}-15 n+14\right) V_{n} / 14 .
\end{array}
$$

Here $\pm(r, r, 0, \cdots, 0)_{S}$ denotes the two sets of points $(r, r, 0, \cdots, 0)_{S}$ and $(-r,-r, 0, \cdots, 0)_{s}$.
4. Remarks. If formula (2) for C_{m} is fully-symmetric and if we denote it by $R^{(m)}$ as Lyness [3] does, then our extension of $R^{(m)}$ coincides with the formula denoted by Lyness as $E_{m}{ }^{n}(0) R^{(m)}$. We have not discussed formulas which correspond to the $E_{m}{ }^{n}(\gamma) R^{(m)}, \gamma \neq 0$, of Lyness.

The method described in Section 2 for extending a formula for C_{m} can also be applied to certain other special regions. Let R_{1} be a one-dimensional region and $w_{1}(x) \geqq 0$ a weight function which satisfy $\int_{R_{1}} w_{1}(x) x^{k} d x=0, k$ an odd integer, $0<k \leqq d$. Let $R_{m}=R_{1} \times R_{1} \times \cdots \times R_{1}$ and $w_{m}\left(x_{1}, \cdots, x_{m}\right)=w_{1}\left(x_{1}\right) \cdots w_{1}\left(x_{m}\right)$. Given a symmetric integration formula of degree $d \leqq 2 m+1$ for

$$
\begin{equation*}
\int_{R_{m}} \cdots \int w_{m}\left(x_{1}, \cdots, x_{m}\right) f\left(x_{1}, \cdots, x_{m}\right) d x_{1} \cdots d x_{m} \tag{9}
\end{equation*}
$$

we can extend this formula-by a method exactly similar to the method for C_{m} to obtain a symmetric formula of degree d for

$$
\int_{R_{n}} \cdots \int w_{n}\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

As an example of (9) we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \exp \left(-x_{1}^{2}-\cdots-x_{m}{ }^{2}\right) f\left(x_{1}, \cdots, x_{m}\right) d x_{1} \cdots a x_{m} \tag{10}
\end{equation*}
$$

Lyness [4] has discussed extensions of fully-symmetric formulas for (10).
The method of extension discussed here (and by Lyness) has the undesirable property of producing integration formulas with both positive and negative coefficients. Hopefully, methods of extension will be found which do not introduce negative coefficients.

Computing Center

State University of New York
Buffalo, New York 14214

1. J. Albrecht \& L. Collatz, "Zur numerischen Auswertung mehrdimensionaler Integrale," Z. Angew. Math. Mech., v. 38, 1958, pp. 1-15. MR 20 \#432.
2. P. C. Hammer \& A. H. Stroud, "Numerical evaluation of multiple integrals. II," MTAC, v. 12, 1958, pp. 272-280. MR 21 \#970.
3. J. N. Lyness, "Symmetric integration rules for hypercubes. II: Rule projection and rule extension," Math. Comp., v. 19, 1965, pp. 394-407. MR 34 \#953.
4. J. N. Lyness, "Integration rules of hypercubic symmetry over a certain spherically symmetric space," Math. Comp., v. 19, 1965, pp. 471-476. MR 34 \#955.

[^0]: Received May 15, 1967. Revised July 19, 1967.

 * This work was supported by NSF Grant GP-5675.

