
Extensions of Symmetric Integration Formulas* 

By A. H. Stroud 

1. Introduction. Assume we are given an integration formula for the m-dimen- 
sional cube Cm of the form 

(1 (1 N 

(1) J J f(xl, *, Xn)dxl ... dxm E E Ajf(vjl* , vjm) 
-1 -1 jl1 

which is exact for all polynomials of degree _d; this is equivalent to assuming (1) 
is exact for all monomials 

XlalX2a2 ... Xmam al, ... am nonnegative integers , 
o < a1 + a2+ * -+am< d. 

We say that such a formula (1) has degree d. 
We say that formula (1) is symmetric if the right side of (1) is not changed 

under any of the m! permutations of the variables xi, X2, * * *, xm. In other words 
(1) is symmetric provided that if the formula contains the point 

(V jl Vj2j * * Vim) coeff. Aj 

then the formula also contains the point 

(Vjpl, Vjp21 
.. ** vjPm) coeff. A j 

where (pl, P2, p pm) is any permutation of (1, 2, * * *, m). 
In this article we show how a symmetric formula (1) of degree d < 2m + 1 

for Cm can be used to construct a symmetric formula of the same degree for Cn, 
n > m. 

Following Hammer and Stroud [2] we say that formula (1) is fully-symmetric if 
the right side of (1) is not changed under any of the 2m(m!) linear transformations 
of Cm onto itself. Lyness [3] has given a method by which a fully-symmetric formula 
of degree d < 2m + 1 can be used to construct a fully-symmetric formula of de- 
gree d for Cn, n > m. Lyness defines a formula for Cn constructed by this method 
as an extension of the formula for Cm. The result of this article is a variation of the 
result of Lyness. 

In what follows we use the notation 

fl fl 
Im(XalX2a2a J XJ a)al a2 Xamdx dXm 

and V. =_ Ic.(1) = 2m. We note for future reference that if 

Icm(XlalX2a2 ... Xmam) = Cal... amVm 

then 
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Ic,(XlalX2a2.X* * am) = Cc ...amVn. 

2. The Method of Extension. We assume formula (1) is symmetric and we 
write the points and coefficients in this formula as follows: 

(Hi1 * l* , .i . * , . . . 
ik, o O)S Ai = aiVm, 

(2) 
mi, times mik times m - mi times 

mi= mii+ *-- +mik,O m < m,l? < mi? <m, * -,1 ik _m , Lir.r Lis 
r 7;, s, i = 1, 2, *. * * M . 

Here (v ***, vim)s denotes the set of points consisting of the point 
(vil* **, vim) and all points obtained by permuting the coordinates vii, *** Vim 

in all possible ways. A i is the coefficient of each point in the set of points (2). 
We define the extension of formula (2) to be the formula for Cn consisting of 

the following: 

il *. , I, * * , ik,l * *, Aik, o, * I, O)S B i1,--- Jik 
k 

(3) jil times jik times n - ii times 
ii = jil + ***+ jik, 

for all possible choices of jil *, jik which satisfy 0 ? jil < mil, *, 0 < ik < Mik 

and for all i, i = 1, 2, ... , M. The coefficient of the points (3) is 

(4) Bi,jil,..., jik = (- 1) "-j)Z (n,m 'm' 
j i aiV, (4) ~ ~ ~ 'Uk - 

~(Mil - jil)!~ (Mik 
- .jik)! 

a, 

where Z(n, m, m, ji) = (n - m + m - ji- 1)!/(n - m - 1)! 
We now state: 
THEOREM 1. If formula (2) for Cm has degree d, where d < 2m + 1, then the 

points (3) with coefficients (4) are a formula of degree d for C, n > m. 
We do not know how to prove this theorem for all m but we believe it to be 

true. We have verified it for m < 5; we will show how it can be verified for m = 4. 
To start let us assume that the points (2) have the special form 

(5) (ily, /ilj, i2; /i2)S Ai = aiV4 

for all i = 1, 2, * , M. The points (3) and coefficients (4) will then be 

Oll1 Aili Ai2i Ai2, 0, . . *, O)s Bi,2,2 = aiVn I 

Uilu, il, /i2, 0, 0, ... , O)s Bi,2,1 = - (n-4)aiVn, 
(Ail.i2, Ii2, 0, 0, * - ., O)s Bi,1,2 

( Mil, iu,O,0, 0, 0, . ,O)s Bi,2,0 _ (n - 3)(n - 4) aiV, 
(Ai22 Ii2j 0, 0, 0, , O)S Bi,0,2 J 2 

(6) (Ai1, Ai2j 0, 02 0, -y O)s Bu,i,i = (n - 3)(n - 4)aiVn, 

(Mi,, 0, 0, 0, 0, . ,O)s Bij,ol -(n - 2)(n - 3)(n -4) aiV, 
(Aui2, 0, 0, 0, 0, - ., O)s Bi,o,if 2 

( O 0, 0, O, O, -I ,O) Bi,oo= 
(n - 1)(n - 2)(n - 3)(n - 

4)aY (0 0, 0, 0,0,...,0) Bu,o,o4 aV, 
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Here Bi,o,o is only part of the coefficient of the point (0, 0, *, 0) in the extended 
formula; this coefficient is ,I=, Bi,o,o. 

Let ali, a2, 0a3, O4 be fixed, but arbitrary, positive integers which satisfy 

0 < a, ? d, 
0 < a,/ + a2 _ d , 
0 < al +0/2 + CX3 ? d, 
0 < ali + 0/2 + 0a3 + 0/4 ? di 

where d < 9. We show that formula (6) is exact for each of the five monomials 

(7) Xia1X2a2X3a3Xa4 XialX2a2X3a3 XlalX2a2, Xil, 1. 

Consider, for example, the monomial XlalX2a2. The assumption that (5) is a 
formula of degree d, d < 9, implies that 

Vm a [halpTi + 2,aI -F- + 2,24't2 + IC.ThX14'] = 'Cm( X2a-) 

Using formula (6) to approximate IcX(XlaX2a2) we can verify that we obtain 

All 
ir ral# 

a2 Ia a2 al a 2t I a?Clt aa21 
V n a U 

q12 2/ 23 + 122 2S a a-1 qJ A aLty t,il ui2 t i,ill i2 t Xi /1i2] 
i=l 

By the remark made at the end of Section 1 this shows that formula (6) is exact 
for X1l2X29122. In a similar way we can verify that (6) is exact for all the monomials 
(7). By symmetry it follows that (6) is also exact for all monomials 

al a2 a3 a4 alja2Xa3 a1Xa2 (1a2 

CP1 P2' P3 P4 I Pl PI P 3 'VP XPl 

where (pl, P2, P3, p4) is any permutation of (1, 2, 3, 4). 
To complete the proof that (6) has degree d there onily remains to show that 

(6) is exact for all monomials of the form 

(8) XC1XC12. . acs 
4 s 

(8) xP2 zPs 1 4 < s < n, ao > 0, i = 1, , s, 0 < 0a + * + a, , 9. 

We note that in each monomial (8) the a i cannot all satisfy at > 2, i = 1, **, s. 
Therefore, for at least one i we must have a= 1. This means that 

IC al jaX 2 . . .) = O0 

But formula (6) also gives zero for the integral of (8) because each point of (6) has 
at most four nonzero coordinates. 

In a similar way we can verify that if a formula (2) for C4 consists of any col- 
lection of points and has degree d < 9 theni the extended formula (3) also has 
degree d. 

3. An Example. Albrecht and Collatz [1] have given the following 5th-degree 
7-point formula for C2: 

(0, 0) 2V2/7, 
(r, r) 25 V2/168, 
(-r, -r) 25V2/168 
(s,-t) s 5V2/48 
(-s, t)s 5V2/48 

= 7/15, 82 = (7 + (24)1/2)/15, t2 = (7 - (24)112)/15 
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The extension of this formula gives the following 5th-degree formula for Cn 
which uses 3n2 + 3n + 1 points: 

4 (r, rn ,* *, O)s 25Vn/168, 
?(r, O, O, *.*., O)s -25(n-2)Vn/168, 
4-(s, - t, O, .. * O)s 5Vn/48 2 

i(S2 0, 0, .., O) s -5(n -2) Vn/48 , 
(t, O,O, * *., O)s -5(n-2)Vn/48, 
(0, 0, 0, *, 0) (5n2 - 15n + 14)Vn/14. 

Here 4 (r, r, 0, ., 0) s denotes the two sets of points (r, r, 0, , 0)s and 

(-r, -r, 0, **, O)s. 

4. Remarks. If formula (2) for Cm is fully-symmetric and if we denote it by 
R (m) as Lyness [3] does, then our extension of R (m) coincides with the formula de- 
noted by Lyness as Em (O)R (m). We have not discussed formulas which correspond 
to the Emn(y)R(m), -y 5- 0, of Lyness. 

The method described in Section 2 for extending a formula for Cm can also be 
applied to certain other special regions. Let R1 be a one-dimensional region and 

wI(x) > 0 a weight function which satisfy fYR w1 (X)Xkdx = 0, k an odd integer, 0 < k < d. 
Let Rm = R1 X R1 X ... X R1 and wm(xi, * *, xm) = wi(xi) ... wi(xm). Given 

a symmetric integration formula of degree d ? 2m + 1 for 

(9) .. * Wm (xi, ** x.) f (xi, .. * xm)dxl ... dxm 
Rm 

we can extend this formula-by a method exactly similar to the method for Cm- 
to obtain a symmetric formula of degree d for 

A . * Wn (XI, *** Xn) f (Xll .. * * Xn)dXl ... dXn . 
n 

As an example of (9) we have 

(10) f f exp (-1- - -Xm) f (Xi * ** Xm)dXil ***xQm . 00 -00 ~~~~~~~~ 2 

Lyness [4] has discussed extensions of fully-symmetric formulas for (10). 
The method of extension discussed here (and by Lyness) has the undesirable 

property of producing integration formulas with both positive and negative co- 
efficients. Hopefully, methods of extension will be found which do not introduce 
negative coefficients. 
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